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Announcements

• Problem Set 1 due Friday 11:59 pm

• Office hours Friday 13:30 – 14:30 pm



Memory Instructions

• lw $t0, 0($t1)

– $t0 = Mem[$t1+0]

– Loads 4 bytes from $t1, $t1+1, $t1+2, and $t1+3

• sw $t0, 4($t1)

– Mem[$t1+4] = $t0

– Stores 4 bytes at $t1+4, $t1+5, $t1+6, and $t1+7

• These instructions are the cornerstones of our being able to go 

to and from memory



Memory Organization

• Viewed as a large, single-dimension array, with an address.

• A memory address is an index into the array

• “Byte Addressing" means that the index points to a byte of 

memory.
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Memory Organization

• Bytes are nice, but most data items use larger "words"

• For MIPS, a word is 32 bits or 4 bytes.

• 232 bytes with byte addresses from 0 to 232 - 1

• 230 words with byte addresses 0, 4, 8, ... 232 - 4
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Memory Operand Example 1

• C code:

g = h + A[8];

– g in $s1, h in $s2, base address of A in $s3, A is an array of 4 byte ints

• Compiled MIPS code:

– Index 8 requires offset of 32

lw $t0, 32($s3)    
add $s1, $s2, $t0



Translate to MIPS

• C code: g = h + A[5];
– g in $s1, h in $s2, base address of A in $s3.

– A is an array of 4-byte ints

A.

B.

C.

D.

lw $t0, 20($s3)    
add $s1, $s2, $t0

lw $t0, 5($s3)    
add $s1, $s2, $t0

lw $t0, $s5    
add $s1, $s2, $t0

lw $t0, $s3    
add $s1, $s2, $t0



Memory Operand Example 2

• C code:

A[12] = h + A[8];

– h in $s2, base address of A in $s3

• Compiled MIPS code:

– Index 8 requires offset of 32

lw $t0, 32($s3)    # load word
add $t0, $s2, $t0
sw $t0, 48($s3)    # store word



When a 2-byte word is stored in byte-addressed 

memory (occupying two consecutive bytes), is the 

most significant byte (MSB) stored in the lower 

address or the higher address?

A. Low

B. High

C. It Depends
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0000 0000
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= 15
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Byte ordering

• Big Endian:  Most significant byte in lowest address 

• Little Endian:  Most significant byte in highest address



Immediate Operands

• Constant data specified in an instruction

– addi $s3, $s3, 4

– li $t0, -25

– ori $v0, $t8, 1



Subtract 2 from $s0 and store in register $s1

A.addi $s0, $s1, -2

B.addi $s1, $s0, -2

C.subi $s0, $s1, 2

D.subi $s1, $s0, 2

E. More than one of the above



MIPS Design Principles

• Simplicity favors regularity

– fixed size instructions

– small number of instruction formats

• Smaller is faster

– limited instruction set

– limited number of registers in register file

• Make the common case fast

– arithmetic operands from the register file (load-store machine)

– allow instructions to contain immediate operands



Pseudoinstructions

• move dest, src => add dest, $zero, src

• subi dest, src, imm => addi dest, src, -imm

• li dest, imm => addi dest, $zero, imm

• More complicated expansions are possible



Loading a large number into a register

• Immediates are limited to 16 bits

– -32768 to 32767 or 0 to 65535

• Numbers outside this range need to be loaded into registers 

before being used

• load upper immediate instruction sets the most-significant 16

bits of a register

– lui $t0, 0x1234

ori $t0, $t0, 0x5678

• When li is given a value that’s too large, the assembler expands

it to lui/ori



MIPS Questions?



Why we need to learn binary (and other number 

systems)

• Fundamental to how your computer works

– Will need a good grasp of binary to understand things like logical 

operations

– Will need to translate to binary to work out examples

• Need to understand it to understand many things like network 

protocols (IP addresses), bit masking, etc.



Positional Notation

• The meaning of a digit depends on its position in a number.  

• A number, written as the sequence of digits d
n
d
n-1

…d
2
d
1
d
0

in 

base b represents the value

dn * bn + dn-1 * bn-1 + ... + d2 * b2 + d1 * b1 + d0 * b0



Consider 101

• In base 10, it represents the number 101 (one hundred one) = 

• In base 2, 101
2

= 

• In base 8, 101
8

= 



101
5 

= ?

A. 26

B. 51

C. 126

D. 130



101
-3

=?

A. -10

B. 8

C. 10

D. -30



Binary: Base 2

• Used by computers

• A number, written as the sequence of digits d
n
d
n-1

…d
2
d
1
d
0

where d is in {0, 1}, represents the value

dn * 2n + dn-1 * 2n-1 + ... + d2 * 22 + d1 * 21 + d0 * 20



Computers Use Binary Because

A. Decimal takes too much space

B. It’s easier to do math with binary

C. It is easy to represent two states (on/off) with electricity

D. None of the above



Decimal: Base 10

• Used by humans

• A number, written as the sequence of digits d
n
d
n-1

…d
2
d
1
d
0

where d is in {0,1,2,3,4,5,6,7,8,9}, represents the value

dn * 10n + dn-1 * 10n-1 + ... + d2 * 102 + d1 * 101 + d0 * 100



Hexadecimal: Base 16

• Like binary, but shorter!

• Each digit is a “nibble”, or half a byte (4 bits)

• Indicated by prefacing number with 0x (usually)

• A number, written as the sequence of digits d
n
d
n-1

…d
2
d
1
d
0

where d is in {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}, represents the 

value

dn * 16n + dn-1 * 16n-1 + ... + d2 * 162 + d1 * 161 + d0 * 160



Octal: Base 8

• Sometimes used to shorten binary

– Used to specify UNIX permissions (remember 241?)

• A number, written as the sequence of digits d
n
d
n-1

…d
2
d
1
d
0

where d is in {0,1,2,3,4,5,6,7}, represents the value

dn * 8n + dn-1 * 8n-1 + ... + d2 * 82 + d1 * 81 + d0 * 80



31
8

= ?
10

A. 24

B. 25

C. 200

D. 208

E. None of the above



Reading

• Next lecture:  Negatives in binary

– Section 2.4

• Problem Set 1 – due Friday

43


