
CSE 210: Computer Architecture

Lecture 5: MIPS, Number Systems

Stephen Checkoway

Oberlin College

Oct. 13, 2021

Slides from Cynthia Taylor

1

Announcements

• Problem Set 1 due Friday 11:59 pm

• Office hours Friday 13:30 – 14:30 pm

Memory Instructions

• lw $t0, 0($t1)

– $t0 = Mem[$t1+0]

– Loads 4 bytes from $t1, $t1+1, $t1+2, and $t1+3

• sw $t0, 4($t1)

– Mem[$t1+4] = $t0

– Stores 4 bytes at $t1+4, $t1+5, $t1+6, and $t1+7

• These instructions are the cornerstones of our being able to go

to and from memory

Memory Organization

• Viewed as a large, single-dimension array, with an address.

• A memory address is an index into the array

• “Byte Addressing" means that the index points to a byte of

memory.
0

1

2

3

4

5

6

...

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

Memory Organization

• Bytes are nice, but most data items use larger "words"

• For MIPS, a word is 32 bits or 4 bytes.

• 232 bytes with byte addresses from 0 to 232 - 1

• 230 words with byte addresses 0, 4, 8, ... 232 - 4

0

4

8

12

32 bits of data

32 bits of data

32 bits of data

32 bits of data

Registers hold 32 bits of data

Memory Operand Example 1

• C code:

g = h + A[8];

– g in $s1, h in $s2, base address of A in $s3, A is an array of 4 byte ints

• Compiled MIPS code:

– Index 8 requires offset of 32

lw $t0, 32($s3)
add $s1, $s2, $t0

Translate to MIPS

• C code: g = h + A[5];
– g in $s1, h in $s2, base address of A in $s3.

– A is an array of 4-byte ints

A.

B.

C.

D.

lw $t0, 20($s3)
add $s1, $s2, $t0

lw $t0, 5($s3)
add $s1, $s2, $t0

lw $t0, $s5
add $s1, $s2, $t0

lw $t0, $s3
add $s1, $s2, $t0

Memory Operand Example 2

• C code:

A[12] = h + A[8];

– h in $s2, base address of A in $s3

• Compiled MIPS code:

– Index 8 requires offset of 32

lw $t0, 32($s3) # load word
add $t0, $s2, $t0
sw $t0, 48($s3) # store word

When a 2-byte word is stored in byte-addressed

memory (occupying two consecutive bytes), is the

most significant byte (MSB) stored in the lower

address or the higher address?

A. Low

B. High

C. It Depends

0000 0000

0000 1111

0000 0000

0000 1111

= 15

= 15

0

1

0

1

Byte ordering

• Big Endian: Most significant byte in lowest address

• Little Endian: Most significant byte in highest address

Immediate Operands

• Constant data specified in an instruction

– addi $s3, $s3, 4

– li $t0, -25

– ori $v0, $t8, 1

Subtract 2 from $s0 and store in register $s1

A.addi $s0, $s1, -2

B.addi $s1, $s0, -2

C.subi $s0, $s1, 2

D.subi $s1, $s0, 2

E. More than one of the above

MIPS Design Principles

• Simplicity favors regularity

– fixed size instructions

– small number of instruction formats

• Smaller is faster

– limited instruction set

– limited number of registers in register file

• Make the common case fast

– arithmetic operands from the register file (load-store machine)

– allow instructions to contain immediate operands

Pseudoinstructions

• move dest, src => add dest, $zero, src

• subi dest, src, imm => addi dest, src, -imm

• li dest, imm => addi dest, $zero, imm

• More complicated expansions are possible

Loading a large number into a register

• Immediates are limited to 16 bits

– -32768 to 32767 or 0 to 65535

• Numbers outside this range need to be loaded into registers

before being used

• load upper immediate instruction sets the most-significant 16

bits of a register

– lui $t0, 0x1234

ori $t0, $t0, 0x5678

• When li is given a value that’s too large, the assembler expands

it to lui/ori

MIPS Questions?

Why we need to learn binary (and other number

systems)

• Fundamental to how your computer works

– Will need a good grasp of binary to understand things like logical

operations

– Will need to translate to binary to work out examples

• Need to understand it to understand many things like network

protocols (IP addresses), bit masking, etc.

Positional Notation

• The meaning of a digit depends on its position in a number.

• A number, written as the sequence of digits d
n
d
n-1

…d
2
d
1
d
0

in

base b represents the value

dn * bn + dn-1 * bn-1 + ... + d2 * b2 + d1 * b1 + d0 * b0

Consider 101

• In base 10, it represents the number 101 (one hundred one) =

• In base 2, 101
2

=

• In base 8, 101
8

=

101
5

= ?

A. 26

B. 51

C. 126

D. 130

101
-3

=?

A. -10

B. 8

C. 10

D. -30

Binary: Base 2

• Used by computers

• A number, written as the sequence of digits d
n
d
n-1

…d
2
d
1
d
0

where d is in {0, 1}, represents the value

dn * 2n + dn-1 * 2n-1 + ... + d2 * 22 + d1 * 21 + d0 * 20

Computers Use Binary Because

A. Decimal takes too much space

B. It’s easier to do math with binary

C. It is easy to represent two states (on/off) with electricity

D. None of the above

Decimal: Base 10

• Used by humans

• A number, written as the sequence of digits d
n
d
n-1

…d
2
d
1
d
0

where d is in {0,1,2,3,4,5,6,7,8,9}, represents the value

dn * 10n + dn-1 * 10n-1 + ... + d2 * 102 + d1 * 101 + d0 * 100

Hexadecimal: Base 16

• Like binary, but shorter!

• Each digit is a “nibble”, or half a byte (4 bits)

• Indicated by prefacing number with 0x (usually)

• A number, written as the sequence of digits d
n
d
n-1

…d
2
d
1
d
0

where d is in {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}, represents the

value

dn * 16n + dn-1 * 16n-1 + ... + d2 * 162 + d1 * 161 + d0 * 160

Octal: Base 8

• Sometimes used to shorten binary

– Used to specify UNIX permissions (remember 241?)

• A number, written as the sequence of digits d
n
d
n-1

…d
2
d
1
d
0

where d is in {0,1,2,3,4,5,6,7}, represents the value

dn * 8n + dn-1 * 8n-1 + ... + d2 * 82 + d1 * 81 + d0 * 80

31
8

= ?
10

A. 24

B. 25

C. 200

D. 208

E. None of the above

Reading

• Next lecture: Negatives in binary

– Section 2.4

• Problem Set 1 – due Friday

43

